Volume 5, Issue 1, March 2019, Page: 29-34
The Influence of the Number of Laser Pulses on the Thickness and Roughness of TiO2 Thin Films Fabricated Using Pulsed Laser Deposition
Ahmed Mohamed Salih, Department of Laser System, Institute of Laser, Sudan University
Nafie Abdallatief Almuslet, Department of Physics, Almogran College of Science and Technology, Khartoum, Sudan
Abdelmoneim Mohamed Awadelgied, Department of General Science, Karary University, Omdurman, Sudan
Received: Mar. 2, 2019;       Accepted: Apr. 10, 2019;       Published: May 6, 2019
DOI: 10.11648/j.ajpst.20190501.14      View  134      Downloads  17
Abstract
In this work Titanium Dioxide thin films were fabricated by pulsed laser deposition technique (PLD) using a Q-switched Nd: YAG laser. Titanium dioxide powder, in the Anatase form, was compressed to form solid disks. Each of these disks was irradiated with different number of laser pulses (5, 10 and 15 pulses) with the same pulse energy (150 mJ) and same Repetition rate (10 Hz). The thickness and topography of each deposited thin films were characterized using atomic force microscopy (AFM). The results showed that the thickness of the film increase exponentially when the number of laser pulses increased. The results showed also that the average roughness (Ra) of the films and the root means square roughness (RMS) increased with increasing the number of pulses exponentially to specific value and then decreased exponentially in a behavior like the Gaussian shape.
Keywords
TiO2 Thin Films, Pulsed Laser Deposition, Film Thickness, Roughness
To cite this article
Ahmed Mohamed Salih, Nafie Abdallatief Almuslet, Abdelmoneim Mohamed Awadelgied, The Influence of the Number of Laser Pulses on the Thickness and Roughness of TiO2 Thin Films Fabricated Using Pulsed Laser Deposition, American Journal of Polymer Science and Technology. Vol. 5, No. 1, 2019, pp. 29-34. doi: 10.11648/j.ajpst.20190501.14
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
H. Lin, C. P. Huang, W. Li, C. Ni, S. I. Shah, Y. H. Tseng, Applied Catalysis B Environmental 68 (2006) 1-11.
[2]
Fujishima, A., Raro, T. N. & Tryk, D. A. "Titanium dioxide photocatalysis". J. Photochem. Photobiol. C 1, 1–21 (2000).
[3]
Shi, E. et al. "TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%". Sci. Rep. (2012) 2, 884.
[4]
Tompson, C. S., Fleming, R. A. & Zou, M. "Transparent self-cleaning and antifogging silica nanoparticle films". Sol. Energy Mater. Sol. Cells 115, 108–113 (2013).
[5]
Pelaez M., Nolan N. T., Pillai S. C., Seery M. K., Falaras P., Kontos A. G., Dunlop P. S. M., Hamilton J. W. J., Byrne J. A., O’Shea K., Entezari M. H., Dionysiou D. D, Appl. Catal. B Environ. 125 (2012) 331.
[6]
HosseiniA., Içil K. Ç., Özenbaş M., Erçelebi Ç., J. Energy Procedia 60 (2014) 191-198.
[7]
Carp, O., C. L. Huisman, et al.. "Photoinduced reactivity of titanium dioxide." Progress in Solid State Chemistry (2004) 32 (1–2): 33-177.
[8]
Bumjoon, K., B. Dongjin, et al. "Structural Analysis on Photocatalytic Efficiency of TiO2 by Chemical Vapor Deposition." Jpn. J. Appl. Phys. (2002) 41.
[9]
Larson S. A., Falconer J. L., Appl. Catal. B: Environ. 4 (1994) 149.
[10]
Sakha V. A., Arabatzis I. M., Konstantinou I. K., Dimou A. D., Albanis T. A., Falaras P., Appl. Catal. B: Environ. 49 (2004) 195–205.
[11]
Hara K., Hariguchi T., Kinoshita T., Sayama K., Arakawa H., Solar Energy Mater. Solar Cell. 70 (2001) 151.
[12]
Tachibana Y., Ohsaki H., Hayashi A., Mitsui A., Hayashi Y., Vacuum. 59 (2000) 836.
[13]
Yuranova, T.; Mosteo, R.; Bandara, J.; Laub, D.; Kiwi, J. "Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating". J. Mol. Catal. A Chem. (2006), 244, 160–167.
[14]
Yuranova, T.; Laub, D.; Kiwi, J. "Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation". Catal. Today (2007), 122, 109–117.
[15]
Abidi, N.; Cabrales, L.; Hequet, E. "Functionalization of a cotton fabric surface with titania nanosols: Applications for self-cleaning and UV-protection properties". ACS Appl. Mater. Interfaces (2009), 1, 2141–2146.
[16]
Wang Y. L., Zhang K. Y., Surf. Coat. Technol. 140 (2001) 155.
[17]
Takeda S., Suzuki S., Odaka H., Hosono H., Thin Solid Films. 392 (2001) 338.
[18]
El-Maghraby E. M., Nakamura Y., Rengakuji S., Catalysis Communications 9 (2008) 2357-2360.
[19]
Huang M., Yu S., Li B., Dong L., Zhang F., Fan M., Wang L., Yu J., Deng C., Ceramics International, 40 (2014) 13305-13312.
[20]
E. Gyorgy, G. Socol, E. Axente, I. N. Mihailescu, C. Ducu, S. Ciuca, Applied SurfaceScience 247 (2005) 429-433.
[21]
T. Yoshida, Y. Fukami, M. Okoshi, N. Inoue, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 44 (2005) 3059-3062.
[22]
Kelly, R., and A. Miotello, "Mechanisms of pulsed laser sputtering in Pulsed Laser Deposition of Thin Films", D. B. Chrisey and G. K. Hubler, editors, John Wiley & Sons, Inc., New York, 55-87 (1 994).
[23]
Geohegan, D. B., "Diagnostics and characteristics of laser-produced plasmas in Pulsed Laser Deposition of Thin Films", D. B., Chrisey and G. K. Hubler, editors, John Wiley & Sons, Inc., New York, 115-165 (1994).
[24]
Foltyn, S. R., "Surface modification of materials by cumulative laser irradiation in Pulsed Laser Deposition of Thin Films", D. B. Chrisey and G. K. Hubler, editors, John Wiley & Sons, Inc., New York, 89-113 (1994).
[25]
Witanachchi, S., K. Ahmed, P. Sakthivel, and P. Mukherjee, "Dual-laser ablation for particdate-free film growth", Appl. Phys. Lett. 66 (12), 1469-1471 (1995).
[26]
Chen, KR., LN. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, "Laser-solid interaction and dynamics of laser-ablated materials", Appl. Surf. Sci. 96-98, 45-49 (1996).
[27]
Hubler, G. K., "Cornparison of vacuum deposition techniques in Pulsed Laser Deposition of Thin Films", D. B. Chrisey and G. K. Hubler, John Wiley & Sons, Inc., New York, 327-355 (1994).
[28]
Smith, D. L., "Thin-Film Deposition", McGraw-Hill, Inc., New York, 400-431 (1995).
Browse journals by subject